Refine your search:     
Report No.
 - 
Search Results: Records 1-10 displayed on this page of 10
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Unstructured-mesh simulation of sodium-water reaction in tube bundle system by SERAPHIM code

Uchibori, Akihiro; Shiina, Yoshimi*; Watanabe, Akira*; Takata, Takashi*

Proceedings of 19th International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-19) (Internet), 12 Pages, 2022/03

An unstructured mesh-based analysis method has been integrated into the sodium-water reaction analysis code, SERAPHIM, in our recent studies. In this study, numerical analysis of an experiment on sodium-water reaction in a tube bundle domain was performed to investigate the effect of the unstructured mesh. The unrealistic behavior appeared in the coarse structured mesh was improved by the unstructured mesh. The numerical result in the case of the unstructured mesh reproduced the peak value of the temperature in the reacting flow.

Journal Articles

Application of unstructured mesh-based numerical method to sodium-water reaction phenomenon analysis code SERAPHIM

Uchibori, Akihiro; Watanabe, Akira*; Takata, Takashi; Ohshima, Hiroyuki

Nihon Kikai Gakkai Rombunshu (Internet), 84(859), p.17-00394_1 - 17-00394_6, 2018/03

For assessment of the wastage environment under tube failure accident in a steam generator of sodium-cooled fast reactors, a mechanistic computer code called SERAPHIM calculating compressible multicomponent multiphase flow with sodium-water chemical reaction has been developed. The original SERAPHIM code is based on the finite difference method. In this study, unstructured mesh-based numerical method was developed and introduced into the SERAPHIM code to advance a numerical accuracy for the complex-shaped domain including multiple heat transfer tubes. Validity of the unstructured mesh-based SERAPHIM code was investigated through the analysis of an underexpanded jet experiment. The calculated pressure profile showed good agreement with the experimental data. Numerical analysis of water vapor discharging into liquid sodium was also performed. It was demonstrated that the proposed numerical method could be applicable to evaluation of the sodium-water reaction phenomenon.

JAEA Reports

Development of real-time visualization system for computational fluid dynamics on parallel computers

Muramatsu, Kazuhiro; Otani, Takayuki; Matsumoto, Hideki*; Takei, Toshifumi*; Doi, Shun*

JAERI-Data/Code 98-014, 35 Pages, 1998/03

JAERI-Data-Code-98-014.pdf:1.83MB

no abstracts in English

Journal Articles

An Object-oriented programming paradigm for parallel computational fluid dynamics on memory distributed parallel computers

*

Parallel Computational Fluid Dynamics, p.561 - 568, 1998/00

no abstracts in English

JAEA Reports

Oral presentation

Numerical study of buoyant flow using different cell shapes by OpenFOAM

Ishigaki, Masahiro; Abe, Satoshi; Shibamoto, Yasuteru; Yonomoto, Taisuke

no journal, , 

no abstracts in English

Oral presentation

The Simulation of temperature distribution in 1F Unit 3 by using CFD method

Kaku, Eiji*; Okamoto, Koji*; Kondo, Masahiro*; Ozdemir, E.*; Shiba, Tomoki*; Sato, Ikken

no journal, , 

In this study aiming at contribution for safe decommissioning of Fukushima-Daiichi NPP, CFD (Computational Fluid Dynamics) method was applied and temperature distribution of Unit 3 was reproduced. This temperature distribution was then compared with the measured data obtained by TEPCO so that debris distribution can be estimated. Combined application of optimized tools and CFD method to resolve inverse problem determining best suited thermal balance within the containment vessel is a characteristic of this study.

Oral presentation

CFD analysis of hydrogen flame propagation with burning velocity models

Motegi, Kosuke; Trianti, N.; Matsumoto, Toshinori; Sugiyama, Tomoyuki; Maruyama, Yu

no journal, , 

no abstracts in English

Oral presentation

Steady flow prediction using convolutional neural networks with boundary exchange

Hatayama, Sora*; Shimokawabe, Takashi*; Onodera, Naoyuki

no journal, , 

Computational fluid dynamics (CFD) is widely used as a fluid analysis technique. However, these have a problem that the calculation cost is very expensive and the execution time for reaching a steady-state is long. To solve this problem, we use convolutional neural networks (CNN), which is one of the deep learning methods, to predict CFD results. In this research, we provide the method and implementation of steady flow prediction using CNN with boundary exchange to predict the CFD results in a large area.

Oral presentation

Development of unstructured-mesh sodium-water reaction analysis code, SERAPHIM; Effect of unstructured mesh and benchmark analysis

Uchibori, Akihiro; Shiina, Yoshimi*; Watanabe, Akira*; Takata, Takashi*

no journal, , 

A computational fluid dynamics code, SERAPHIM, for sodium-water reaction has been developed. An unstructured mesh-based analysis method was integrated into this code for a complex-shaped domain including multiple heat transfer tubes. In this study, both structured- and unstructured-mesh analyses of the experiment on sodium-water reaction in a tube bundle domain was performed to investigate. The analyses showed that non-physical flow behavior in the case of the coarse structured mesh was improved by the unstructured mesh.

10 (Records 1-10 displayed on this page)
  • 1